113 research outputs found

    Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.

    Get PDF
    Breast milk enhances the predominance of Bifidobacterium species in the infant gut, probably due to its large concentration of human milk oligosaccharides (HMO). Here we screened infant-gut isolates of Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum using individual HMO, and compared the global transcriptomes of representative isolates on major HMO by RNA-seq. While B. infantis displayed homogeneous HMO-utilization patterns, B. bifidum were more diverse and some strains did not use fucosyllactose (FL) or sialyllactose (SL). Transcriptomes of B. bifidum SC555 and B. infantis ATCC 15697 showed that utilization of pooled HMO is similar to neutral HMO, while transcriptomes for growth on FL were more similar to lactose than HMO in B. bifidum. Genes linked to HMO-utilization were upregulated by neutral HMO and SL, but not by FL in both species. In contrast, FL induced the expression of alternative gene clusters in B. infantis. Results also suggest that B. bifidum SC555 does not utilize fucose or sialic acid from HMO. Surprisingly, expression of orthologous genes differed between both bifidobacteria even when grown on identical substrates. This study highlights two major strategies found in Bifidobacterium species to process HMO, and presents detailed information on the close relationship between HMO and infant-gut bifidobacteria

    SAMSA: a comprehensive metatranscriptome analysis pipeline

    Get PDF
    BackgroundAlthough metatranscriptomics-the study of diverse microbial population activity based on RNA-seq data-is rapidly growing in popularity, there are limited options for biologists to analyze this type of data. Current approaches for processing metatranscriptomes rely on restricted databases and a dedicated computing cluster, or metagenome-based approaches that have not been fully evaluated for processing metatranscriptomic datasets. We created a new bioinformatics pipeline, designed specifically for metatranscriptome dataset analysis, which runs in conjunction with Metagenome-RAST (MG-RAST) servers. Designed for use by researchers with relatively little bioinformatics experience, SAMSA offers a breakdown of metatranscriptome transcription activity levels by organism or transcript function, and is fully open source. We used this new tool to evaluate best practices for sequencing stool metatranscriptomes.ResultsWorking with the MG-RAST annotation server, we constructed the Simple Annotation of Metatranscriptomes by Sequence Analysis (SAMSA) software package, a complete pipeline for the analysis of gut microbiome data. SAMSA can summarize and evaluate raw annotation results, identifying abundant species and significant functional differences between metatranscriptomes. Using pilot data and simulated subsets, we determined experimental requirements for fecal gut metatranscriptomes. Sequences need to be either long reads (longer than 100 bp) or joined paired-end reads. Each sample needs 40-50 million raw sequences, which can be expected to yield the 5-10 million annotated reads necessary for accurate abundance measures. We also demonstrated that ribosomal RNA depletion does not equally deplete ribosomes from all species within a sample, and remaining rRNA sequences should be discarded. Using publicly available metatranscriptome data in which rRNA was not depleted, we were able to demonstrate that overall organism transcriptional activity can be measured using mRNA counts. We were also able to detect significant differences between control and experimental groups in both organism transcriptional activity and specific cellular functions.ConclusionsBy making this new pipeline publicly available, we have created a powerful new tool for metatranscriptomics research, offering a new method for greater insight into the activity of diverse microbial communities. We further recommend that stool metatranscriptomes be ribodepleted and sequenced in a 100 bp paired end format with a minimum of 40 million reads per sample

    Gene regulatory networks in lactation: identification of global principles using bioinformatics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular events underlying mammary development during pregnancy, lactation, and involution are incompletely understood.</p> <p>Results</p> <p>Mammary gland microarray data, cellular localization data, protein-protein interactions, and literature-mined genes were integrated and analyzed using statistics, principal component analysis, gene ontology analysis, pathway analysis, and network analysis to identify global biological principles that govern molecular events during pregnancy, lactation, and involution.</p> <p>Conclusion</p> <p>Several key principles were derived: (1) nearly a third of the transcriptome fluctuates to build, run, and disassemble the lactation apparatus; (2) genes encoding the secretory machinery are transcribed prior to lactation; (3) the diversity of the endogenous portion of the milk proteome is derived from fewer than 100 transcripts; (4) while some genes are differentially transcribed near the onset of lactation, the lactation switch is primarily post-transcriptionally mediated; (5) the secretion of materials during lactation occurs not by up-regulation of novel genomic functions, but by widespread transcriptional suppression of functions such as protein degradation and cell-environment communication; (6) the involution switch is primarily transcriptionally mediated; and (7) during early involution, the transcriptional state is partially reverted to the pre-lactation state. A new hypothesis for secretory diminution is suggested – milk production gradually declines because the secretory machinery is not transcriptionally replenished. A comprehensive network of protein interactions during lactation is assembled and new regulatory gene targets are identified. Less than one fifth of the transcriptionally regulated nodes in this lactation network have been previously explored in the context of lactation. Implications for future research in mammary and cancer biology are discussed.</p
    • …
    corecore